
Deriving confidence metrics for automatic peak assignment through n-D Kendrick defect inference networks 

Or “Getting software to do the hard work—so you don’t have to!” 

Overview  
The data volume produced by Fourier Transform Ion Cyclotron Resonance Mass 

Spectrometers, analysing complex, small molecule samples (e.g. crude oil, natural organic 

matter, food products) requires fast and accurate automatic peak assignment algorithms in 

order to allow efficient interpretation.  Kendrick mass defect and peak mass difference 

formulaic inference techniques have been developed to allow the elemental formulae of 

unassigned peaks to be inferred from those of assigned peaks – but, how confident can one 

be in the predictions of these methods?  We have developed a novel, n-dimensional 

Kendrick defect inference network algorithm which uses artificial intelligence methods to 

produce improved confidence metrics of the resulting peak assignments. 

  2D KMD Space 
Plotting complex mass spectra in multiple Kendrick mass defect (KMD) dimensions (Eqns [1] 

and [2]1), using different Kendrick mass bases (e.g. CH2, C or O) can make it easier to 

manually interpret the data.  Commonly, 2D KMD plots have proven the most useful, but 

the approach can be easily extended to higher dimensions if required.   

Pairs of peaks which can be connected by the same transformation vectors, in this Kendrick 

space, will have the same relative formulaic change between them as shown in Figure 1.  

Correlating these transformation vectors to formulaic differences allows an analyst to infer 

the elemental composition of previously unknown peaks from known peaks.   

Basic Algorithm 
The basic algorithm is shown in Figure 2.  The first step in the algorithm is to attempt to 

identify peaks by means of a library search.  We use various libraries including an accurate 

mass version of the NIST GC/MS library and in-house developed CHO, CHONS and other task 

specific libraries.  Peaks which can be matched to a library entry are classed as ’knowns’.  

The unidentified peaks are classed as ‘unknowns’. 

The Inference Network 
The next step is to generate the inference network.  The mass data is re-plotted in 2D KMD 

space.  Points in the 2D KMD space are connected if the mapping vector between them can 

be assigned to a known, or expected, formulaic difference—as shown in Figure 1.  With a 

new sample type, where the homologous series present are not known, the mass spectrum 

can be statistically analysed to identify common mass differences within the dataset2  as 

shown in Figure 3.  These are matched against a molecular fragment library (commonly C, H, 

O, N & S).  These molecular fragments are then used to generate of a list of mapping vectors 

in the 2D KMD space which can be saved and used to investigate other, similar samples. 

 

 

 

 

 

 

 

 

 

The system now has a set of ‘knowns’ and a set of ‘unknowns’ connected by the inference 

network, an example of which is shown in Figure 1.  

The algorithm can infer the formula of ‘unknowns’ directly connected to ‘knowns’; then the 

next layer of ‘unknowns’ can be inferred, and so on (the Inferral Loop) until all peaks which 

are linked into the inference network have formulae assigned to them. 

This basic process can be used to automatically assign formulae in mass spectra, but the 

confidence one would have in the results would be highly uncertain.  Therefore we apply a 

range of confidence metrics to improve the performance of the algorithm. 

Basic Mass Spectrometric Metrics 
Basic mass spectrometric confidence metrics are used to provide increased confidence in 

the assigned formulae; all peaks identified as library matches must be within a certain mass 

error of the library entry,  All detected isotopologue peaks must exhibit a relative ion 

abundance within defined bounds, and all inferred formulae must meet stoichiometric 

requirements defined by a simple rings plus double bonds check. 

These metrics are common to many formula assignment algorithms.  However, we also 

apply some more novel approaches. 

Artificial Immune System Derived Metrics 
Artificial immune systems are a type of adaptable artificial intelligence which are useful for 

classification, anomaly detection and other recognition tasks.  Artificial neural networks 

mimic the processing abilities of the brain while artificial immune systems mimic the control 

mechanisms thought to be important in the distributed intelligence of the mammalian 

immune system.3-6 

A key part of the control mechanism in the immune system is provided by the B cells and 

the degree to which they are stimulated6 which is moderated by the closeness of the match 

between the B cell antigens and the pathogens which it encounters.  The stimulation level 

triggers a clonal selection process; 

insufficiently stimulated cells are 

culled from the immune system (by 

apoptosis) whereas B cells which are 

stimulated above a threshold are set 

to multiply and mutate, to better 

detect the pathogens. 

 

 Taking each peak in turn, we treat it as an artificial B cell and all other peaks in the 

spectrum as potential pathogens.  The B cell can detect a pathogen if it is directly connected 

through the inference network.  The total stimulation of a B cell is the sum of all the 

connections that cell has to potential pathogens (Figure 5, lower left).  In this way, we can 

record the stimulation level of all peaks in the spectrum as shown in Figure 5, right.   

Assigned peaks, below the user defined stimulation threshold, cannot act as inference 

sources—this prevents the errors associated with potentially mis-assigned or artefact peaks 

being propagated through large parts of the inference network. 

Additionally, ‘inferred’ peaks cannot be assigned until their stimulation level crosses a 

separate, user defined threshold.  This can be thought of as analogous to the inverse of the 

culling process in the biological immune system. 

Uniqueness Metric 
The uniqueness metric is 

intended to reduce the 

possibility of mis-assigned 

library matches.  Not only 

must a library match be within 

a certain accuracy of the peak 

mass, but that there must be 

only that single library hit 

within an even larger mass 

range—the Uniqueness Range 

(see Figure 6).  Therefore it is 

very unlikely that that peak 

has been mis-assigned.   

 

For peaks where there is more 

than one library hit within the 

Uniqueness Range, no formula 

assignment will be returned for 

that peak from the library 

search—the peak, will, most likely 

be assigned through the Inferral 

Loop though (see Figure 7). 

Consistency Metric 
There will be many routes through the inference network between any two points.  The 

Consistency Metric  allows the user to require that all routes between two points must 

result in the same formulaic difference—i.e. the inference network must be 100% internally 

consistent, as shown in Figure 8. 

This metric can be used to probe the validity of 

the confidence settings used to process a given 

spectrum.  For example, consider the user 

manipulation of the required accuracy of 

linkages in the inference network — has this 

been set too loosely?  In the example shown in 

Figure 9, the accuracy requirement for valid 

linkages is systematically degraded.  As the 

accuracy requirement is degraded, the number 

of connections in the inference network 

increases.  However, after a threshold, the 

network ceases to be 100% internally 

consistent and the peak assignment rate 

begins to drop off.  Therefore the spectrum 

accuracy requirement setting must be 

maintained higher than this threshold. 

Charge State Deconvolution—With No Isotope Peaks 
Knowing the charge state of an ion is crucial to being able to assign a formula to it.  

However, for many peaks in complex mass spectra, the intensity of the isotopic peaks may 

be too low to allow the charge state to be calculated from isotopic spacings.   

We have found that it is possible to use the Inference Network to estimate the charge state 

of peaks in complex mass spectra which allows the peak assignment rate to be greatly 

improved. 

Assumptions: This process is based on the assumption that the majority of the peaks in the 

spectrum are singly charged small molecule ions and that members the same homologous 

series will be present in all charge states. 

Method: Build inference networks for all charge states of interest; use the same 

homologous series that were discovered to build the inference network, as before, but 

reduce the connection vector lengths proportional to the charge state of interest—i.e. 

vector length for +2 will be half that for +1.  Record the stimulation level of each ion within 

the different inference networks. The ion stimulation level should be highest for one charge 

state over the others.  That is when the ion fits into the most homologous series and is likely 

to reflect the actual charge state of the ion. 

Deconvolution Example—Synthetic Data 
A synthetic data set was created using the first 65 series of fulvic acids presented by Stenson 

et al.7  This dataset contains both singly (monosodiated) and doubly (disodiated) ions for all 

members.  This dataset was analysed both before and after deconvolution and the results  

(Figure 10) show a marked improvement in the peak assignment rate after deconvolution. 

Deconvolution Example—Whisky  
The same method was used to deconvolve a +ve mode ESI spectrum of malt whisky.  Prior 

to deconvolution, the algorithm returns an assignment rate of 74% (2164 peaks out of 2516 

peaks being assigned unique formulae) with a mass accuracy requirement of 200ppb, a 

uniqueness threshold of 400ppb and the requirement that the inference network be 100% 

internally consistent.   

As a result of deconvolution, 2203 peaks are most stimulated in (and hence assigned to) 

charge state +1 and 313 to charge state +2.  Using the same formula assignment set-up as 

for the un-deconvolved spectrum, the assignment rate for the +1 peaks rises to 84%, but the 

+2 peaks achieve poor assignment rate.  Further investigation, undertaken by adjusting the 

mass accuracy and uniqueness range of the assignment algorithm, reveals that the poor 

assignment rate of the deconvolved +2 peaks is a result of the fact that they suffer an 

apparent 2nd order systematic mass calibration error as shown in Figure 11. 

This systematic mass error is thought to be due to the greater relative effect that electric 

field imperfections (space charge, image charge or static trapping field imperfections)  will 

have on doubly charged ions as opposed to singly charged ions of the same mass.  In an FT-

ICR, this effect would be predicted to have a linear effect on the frequency of the ions which 

would convert to a quadratic effect on the mass to charge8.  As can be seen in Figure 11, the 

systematic mass error does indeed follow a second order polynomial relationship as a 

function of mass and this can be used to recalibrate the doubly charged ions to correct this 

effect.  After deconvolution and recalibration, 87% of the doubly charge ions can be 

confidently assigned giving a total assignment rate of 84%. 

Conclusions 
New metrics of confidence and a novel artificial intelligence method of assigning charge 

states to ions can improve your ability to automatically assign formulae to peaks in complex 

mass spectra—this could greatly improve the rate at which such spectra can be processed. 
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selected are O and C.   The connecting lines 
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Figure 5:  Stimulation levels of ‘known’ and 

‘unknown’ peaks in a –ve mode ESI malt whisky 

mass spectrum. 

Figure 9:  Showing the growing inconsistency of the 

inference network above a certain accuracy 
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Figure 10:  Left: Prior to deconvolution, doubly charged ions are not identified. Right: After deconvolution, 

most ions are identified. 

Figure 11:  Results of deconvolution of +ve mode ESI mass spectrum of malt whisky.  +2 charge assigned 

peaks suffer an apparent systematic mass error believed to be a result of the differential effect of electric 

field imperfections on ions of identical mass but different charge. 
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Figure 7:  Showing that the total assignment rate 

can be maintained through the inference network 

even when the Uniqueness Range is set very high.  

(-ve mode ESI FT-ICR MS of Fulvic acids) 

Figure 8:  All possible routes through the 

inference network must result in the same 

formulaic difference. 
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